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Quantised adiabatic charge transport in the presence of 
substrate disorder and many-body interaction 

Q Niu and D J Thouless 
TCM Group, Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, U K  and 
Physics Department, University of Washington, FM-15, Seattle, Washington, 98195, USA 

Received 3 April 1984 

Abstract. The result for the quantised charge transport induced by an adiabatically varying 
substrate potential is generalised to the case in which both substrate disorder and many-body 
interaction are present. The application of our theory to the problem of the integral and 
fractional quantised Hall effect is discussed. 

1. Introduction 

In a recent published paper Thouless (1983) considered an electronic system acted on 
by a periodic substrate potential which varies adiabatically and periodically in time, 
and discovered that the charge transport induced by such a varying potential is 
quantised. The same phenomenon was then studied by Zee (1984) using relativistic 
field theory, and a similar result was obtained. More recently (Simon 1983), this kind 
of quantisation was analysed in the language of fibre bundles, and was used to classify 
the topological structures of a class of quantum mechanical systems. 

The original theories were general enough to allow both the shapes and the manner 
of change of the periodical potential to be quite arbitrary except for the following two 
assumptions. ( I )  The Fermi level always lies in an energy gap between the filled states 
and the empty states. In other words, the spectrum for the instantaneous Hamiltonian 
takes such a form that there is always an energy gap between the first N states and 
the rest. (2) The eigenstates for the instantaneous Hamiltonian are perfect Bloch waves. 
Therefore neither substrate disorder nor many-body interaction are allowed. Unlike 
the first assumption which is necessary for the application of the adiabatic theorem, 
the second was used only for technical convenience. The present investigation is thus 
devoted to removing the second assumption, and to generalising the result to the case 
of substrate disorder and many-body interaction. 

The adiabatic theorem will be used for the N-body wavefunctions, and the first 
assumption in the original theory will then be put into a slightly different form. That 
is, the ground state for the instantaneous many-body Hamiltonian is always isolated 
from the rest by a finite energy gap (which will be called the Fermi gap). The second 
assumption will, however, be replaced by a rather general one: the absence of long-range 
correlation. Under these conditions the quantisation of the charge transport will be 
re-established. 
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The potentials (one-body or two-body) will be classified into the relevant part and 
the irrelevant part. If a part of the potentials can be continuously turned off at any 
time while keeping the Fermi gap unclosed, then it is called the irrelevant part. The 
physical basis for this classification is the following. So long as the Fermi gap remains 
open, the charge transport should be a continuous functional of the potentials. But 
the allowed values for the charge transport are discrete, therefore it must be a constant 
and independent of the irrelevant part of the potentials. Further, it does not matter 
whether the Fermi gap is generated by the periodic substrate potential or the many-body 
interaction or a combination of both. If it is generated by the periodic potential and 
unclosed by the continuous turning off of the many-body interaction as well as the 
substrate disorder, then the latter two are irrelevant to the charge transport. On the 
other hand, if the Fermi gap is predominantly produced by the many-body interaction, 
then the substrate potentials can be safely forgotten. 

The theory of adiabatic charge transport has an interesting application to the 
quantised Hall effect. Thus, its generalisation provides a new way to prove the stability 
of the integral quantisation of the Hall conductance against the perturbation of the 
many-body interaction and the substrate disorder. In the fractionally quantised Hall 
effect, the Fermi gap is predominantly opened up by the interaction between electrons, 
therefore the substrate potentials can be neglected as the current theories on this subject 
have been saying. The quantised Hall effect problem was critically reviewed by Thouless 
(1984). 

Sections 2-4 are devoted to the detailed analyses which establish the quantisation 
of the adiabatic charge transport in various cases. After the general formulation of 
the problem in $ 2 ,  we first consider, in § 3, the simpler case in which only single-particle 
interactions are involved. Then we study in 0 4 the more difficult but more interesting 
case in the presence of the many-body interaction. In 0 5 we discuss the application 
of our theory to the problem of the quantised Hall effect. 

2. General formulation 

Let us start by considering the Fermi system described by the N-body Hamiltonian 

where the substrate potential consists of two parts: 

7) = ui{Xl)  XI, 7). (2.2) 

The time-dependent part evolves slowly with time T and repeats itself in every period 
T. Note that we have made no postulation about the spacial periodicity of the potentials. 
To make the problem well defined, we impose upon the wavefunctions of the system 
the generalised periodic boundary condition 

$(x,, . . . , x, + L , .  . . , ~ , ) = e ' " ~ $ ( x , ,  . . . , x,, . . . , x,). (2.3) 
The independence of the phase parameter a on the particle index 'i' is required by 
the total antisymmetry. The dimension of the system is assumed to be 1 in the detailed 
calculations for convenience, while the extension to higher dimensions can be made 
easily. 
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At each instant of time, we can in principle find the set of antisymmetrised (and 
normalised) eigenstates I ~ ( T ,  a ) )  of H ( T )  under the boundary condition (2.3) para- 
metrised by a. As mentioned before, we assume that the energy of the ground state 
( O ( T ,  a ) )  is isolated from the others by a finite gap 

4 7 ,  f f ,  L )  (2.4) 

for every (7, a )  E { O s  T S  T, -T<  a L c  T }  and that the system was initially in the 
ground state. Then we decompose the total and exact density matrix for the system 
into the instantaneous one and an extra part: 

~ ( 7 )  = pi(7) + A P ( ~ )  (2.5) 

Then the adiabatic theorem (Kato 1950) ensures that p ( 7 )  deviates very little from pi(7).  
The equation of motion reads 

[H,  Ap] = [ H, pi + Ap] = ipi + iAp  = ipi (2.7) 

where pi commutes with the Hamiltonian and A i  has been dropped since it is of higher 
order than aU/aT. Further, we can write 

(OlPiln)  = ( d / d ~ ) ( O I ~ i ~ n ) - ( O I ~ i ~ ~ ) - ( O I ~ i I f i )  = - (o l f i )= (OIn)  (2.8) 

(2.10) 

(2.1 1 )  

At this point we should point out that our system really corresponds to the a = 0 case, 
so that the current in the absence of the time variation of the substrate potential is 
zero, i.e. 

Thus 

(2.13) 
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In the a ZO case we redefine 

(2.14) 

where {. . .}* stresses what kind of boundary condition is imposed on the states inside 
the parentheses. Later we will show that 

= e x integer ( p  = a L )  (2.15) 

and that 

IC@> - C ( a ) }  + 0 as L-oo, &'-.E, with N /  L = constant. (2.16) 

In other words, by introducing C ( a )  we will be able to explain why C(0)  is quantised 
in the thermodynamic limit. This limit is necessary for the quantisation, as has been 
illustrated by Thouless (1983). 

- 

To establish (2.15) and (2.16), it is easier to work in the basis given by 

I+,,)= exp[-ia(x, +x2+  . . . +xN)]ln) 

H(T,  a>/4,) = En(7, a h )  

which satisfies the equation 

(2.17) 

(2.18) 

and the strict periodic boundary condition, where H(7 ,  a )  is obtained by replacing 
a/ax, everywhere in the original Hamiltonian by d/dx, +ia. Then (2.14) becomes 

where 

(2.19) 

(2.20) 

and therefore 

The justification of the last equality is given in appendix 1 .  Thus 

(2.22) 

(2.23) 

Just as has been argued by Thouless et a1 (1982), such an expression must be an integer 
times the electron charge e. The justification of (2.16) will be given in PP 3 and 4. 
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3. Interaction only with substrate 

In the absence of many-body interaction, the states in (2.14) may be written as 
determinants of single-particle states. The element (nl  - i  a/dxlO) vanishes unless In) 
differs from 10) only by a single-particle excitation, say :he pth single-particle state in 
10) being excited to the qth outside IO). Then the formula for C ( a )  can be turned into 
a form only involving single-particle quantities: 

(3.1) 

where, for example, -i a/dx now stands for the single-particle momentum operator. 
The first summation is taken over all single-particle states below the Fermi gap, while 
the second is over those above the Fermi gap. After some manipulation this can be 
written in terms of the single-particle Green functions: 

C( a )  = - e $ 5,’ d r  Tr (g & ggh) L 27ri 

where 

h E -+(d/dx)’+ U(X, T ) ,  

h = ( d / d T )  u(X, T ) ,  g = ( z  - h ) - ’ .  (3.3) 

The integration contour encloses the filled states energies below the Fermi gap. If we 
make use of the relation 

a/ax = [x, h ]  = [ g - ’ ,  x] 

then 

a a 
az a 7  

= Tr[xggh]-Tr[gxgh] = -- Tr[xgh]-- Tr[xg] 

(3.4) 

(3.5) 

which gives a zero result for C ( a ) ,  owing to the periodicity in z and r of the quantities 
like xg and xgh. This is certainly nonsense! The reason is that we cannot have such 
a relation as 

when the operator x is involved, which takes states satisfying the boundary condition 
(2.17) to states which do not. The correct way of doing this is to use the related proper 
operator ((x) defined by 

Then 
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which gives the correct non-zero result for the charge transport: 

= - e f $ 5 d 7  I]] dx dx’ dx”[g(x’, x)j(O)g(x, x”)g(x”, x’)h(x’)]. 
571 0 

- L I Z  

(3.10) 

When z is away from the spectrum, the Green function g(x, x’) falls off exponentially 
when x’ is far away from the central peak point and the boundary peak points defined 
respectively by 

Ix-x‘I=O and lx - x’j = L, (3.1 1)  

where the latter equation can only be satisfied when x and x’ sit on the opposite 
boundaries of the integration range. While the central peak is a general feature of the 
Green functions whose energy parameter is away from the spectrum, the boundary 
peaks only arise from the boundary condition that has to be satisfied by the Green 
functions. 

Now, because j(0) contains the 6 function centred at x=O, the integrand is 
appreciable only when 

Xt’ z x’ x = 0. (3.12) 

Also, the boundary peak condition cannot be satisfied by any one of the three Green 
functions while still giving appreciable overlapping. Since only the boundary peak 
parts depend on the boundary condition, the a-dependent part of C ( a )  must be 
exponentially small. In conclusion, we must have 

I c (0) - c(cr)( + 0 (3.13) 

in the thermodynamic limit. 
I n  the above analysis only the existence of a finite Fermi gap has been assumed. 

In general, we need the main part of the substrate potential to be periodic in space to 
produce such a gap, with perhaps a weak disorder which does not close it. In  this 
case, the disorder is irrelevant to the charge transport no matter whether it is static or 
varies periodically in time. 

4. With interaction between electrons 

In  this section we consider the case in which many-body interaction is also present. 
Our main theme is to prove the vanishing of (d /dp)C(a)  in the thermodynamic limit, 
which, with the intermediate value theorem, leads to the conclusion stated in (2.16). 
This process is done by converting d C / d p  into the form of correlation functions of 
local operators centred in macroscopically separated regions. Since N-body quantities 
are used repeatedly in this section, we list below a set of abbreviations for convenience: - - 

N N 

x _= XJ, 6(x - X )  = 6(XJ - X ) ,  
J =  I J = I  
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1 
- -  - .  a a  a a  ( ax ax 1 ,:, ( ax, ax, J ( X ) +  a ( x - x ) - + - a ( x - x )  =; 1 6(x , -x ) -+ -a (x , -x )  . 

Formula (2.20) can be written as 

C ( a ) =  - ~ S , ' d 7 $ ~ T r ( G ~ G G f i )  a 

where the trace is taken over all N-fermion states, and  the z integration goes around 
the ground state energy of the system. The N-body Green function is defined by 

G = ( z - H ( T ,  a)) - '  (4.3) 

and the time derivative of the Hamiltonian is actually 

for only the substrate potential is assumed to be varying in time. Note that 

Z/;ix=[x, H ( 7 ,  a ) ] = [ G - ' ,  5 ]+LJ (X, )  (4.5) 

where 6 is a sum of saw-tooth functions with discontinuities at  x, = XI. Substitution 
of this relation into (4.2) gives 

Tr G - GGfi = Tr(6GGfi) - Tr( G t G f i )  + L Tr[ G J ( X , )  GGfi] (b ) 
where the first two terms can in turn be turned into total derivatives with respect to z 
or T,  and therefore they become zero after the z or  7 integration. Therefore 

(4.7) 

The derivative of this quantity with respect to the phase p 
by using the following equations: 

a L  is readily evaluated 

aJ(X,)/;ia = i6(x - X,),  8G/aa = iG ;G/ax. (4.8) 

After applying a similar relation to (4.5) (with the discontinuity of the saw-tooth 
functions at x, = X , )  to the resulting aC'/ap, we come up  with a large number of happy 
cancellations, being left with a comparatively simple result: 

It is easier to work in the second quantisation frame, so we take the trouble (appendix 
2) to express everything in terms of some expectation values in the ground state as 

a 
-C = fgIoT d~e((GJ(X,)GJ(X,)GfiG)-(GfiGJ(X2)GJ(Xi)G) 
ap 



2460 Q Niu and D J Thouless 

At this stage all the operators can be directly turned into their second quantisation 
form, while I ) contains N electrons. To evaluate (4.10), we express G by its Fourier 
transform. The first pair of terms in the braces in (4.10), for instance, can be written as 

- ( H ( - ~ ’ ) J ( x , ) J ( x , ,  t ) > + ( t  + - t ,  t’+ - t ‘ > ]  (4.1 1) 

where C ,  is the upper-half contour surrounding z = Eo. Since z is away from the 
spectrum, the t integrations are effectively cut off to some finite upper bounds. Within 
these bounds, J ( X , ,  t )  remains a local operator, and becomes negligible as it acts on 
the region outside a neighbourhood centred at X I .  We call such a neighbourhood the 
effective domain of the operator. In the thermodynamic limit we can choose X I  and 
X ,  to be macroscopically separated. Then we divide fi(-f’) into fi, and H,,  so that 
the effective domain of fil is macroscopically separated from that of J ( X , ) ,  and the 
effective domain of fi, from that of J ( X , ,  t ) .  If the correlation between operators 
whose effective domains are separated far away is negligible, then it is valid to make 
the following approximation: 

(J(X1, W F 2 ) f i ( - ~ ’ N  - ( f i ( - W ( X * ) J ( X , ,  t ) )  

- ( f i , J ( X d J ( X ,  3 t ) )  

- ( f i * J ( X * ) ) ( J ( X 1 ,  1 ) )  

= ( J ( X , ,  W X d f i I )  + ( J ( X , ,  t>J(X,)f i2) - ( f i i , J ( X , ) J ( X ,  t>)  

= ( J ( X ,  0 f i I ) ( J W 2 ) )  + ( J W 2 ) f i 2 X J ( X I ,  t ) )  - ( f i , J ( X , ,  t ) ) ( J ( X , ) )  

= ( [J(XI  f i I l ) (J (X, ) )  +([J(X, ) ,  f i*I)(J(Xl  t ) )  

= ( [ J ( X ,  21, f i ( - ~ ’ ) I ) ( J ( X 2 ) )  + ( [ J ( X , ) ,  fie “ ( X I ,  t ) )  (4.12) 

where the error made will go to zero in the thermodynamic limit. 
Upon completion of the t integrals (4.1 1)  becomes 

$ & G J ( X , ) G ,  GfiGD(J(X2))  +([J(X2) ,  G f i G l ) ( G J ( X , ) G ) } .  (4.13) 

After a similar manipulation of the second and third pair of terms in (4.10), we arrive 
at the rather simplified result 

(4.14) 

where a large number of cancellations have been accomplished. In fact, with exactly 
the same argument as made above, even this remaining term must also go to zero in 
the thermodynamic limit. In this way, we have justified (2.16) and concluded the 
quantisation of charge transport in the presence of many-body interaction. 

5. Application to the quantised Hall effect 

We consider a two-dimensional interacting electron system acted on by a magnetic 
field in the z direction which is perpendicular to the plane, and by an electric field 
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pointing in the y direction. The existence of a substrate potential is also assumed. 
The Hall current can be calculated in the moving frame in which E is transformed to 
zero. The velocity of the frame is simply 

while the Hamiltonian in this frame is 

(5.2) 

Since the Hall conductance is calculated in the limit of E =0,  the time variation 
of H(through u(r, - ut))  can be considered as adiabatic. The only difference between 
(5.2) and (2.1) is that we now have ( - i  a/dx, - eBy , )  in place of -ia/ax, as in (2.1), 
but the current operator is also modified correspondingly. One can show easily that 
the derivations in the previous sections keep valid under these modifications, so the 
current must continue to be quantised if the Fermi gap is open. 

In the first case in which the Fermi gap lies between the main Landau levels (which 
may be modified by the substrate potential and the many-body interaction), only the 
magnetic field is relevant to the problem, giving a Hall conductance of 

u = n e ’ / h  (5.3) 

where n is the number of filled Landau levels. 
In the second place, if the Fermi gap is between two sub-bands split from a Landau 

level by the periodic part of the substrate potential, then we can ignore the substrate 
disorder and the many-body interaction. As has been done by Thouless et al (1982), 
the Hall conductance is still quantised in the form of (5.3). 

Finally, in the fractional quantised Hall effect, the Fermi gap is believed to be 
generated by the interaction between electrons, then we can totally neglect the substrate 
potential. With this idealisation the current in the moving frame is identically zero. 
This gives a Hall conductance 

u =  u e 2 / h  (5.4) 

with Y being the filling factor of the lowest Landau level. 
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Appendix 1 

To obtain the right-hand side of the last equality in (2.23), we have added a term of 

to the left-hand side. Since is normalised, both ( ~ o ~ ~ o )  and ( 4 0 ~ ~ / ~ ~ ~ ~ o )  must be 
purely imaginary. As a result, the integrand in the above expression is identically zero. 
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Appendix 2 

By expanding the trace,(4.9), we obtain something like 

(A2.1) 

Because of the z integration, only those terms with at least one of the indices in the 
summation being equal to 0 (the index for the ground state) survive. After some tedious 
rearrangement of the terms we obtain (4.10). 
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